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Two molecular tweezers containing a tetrathiafulvalene vinylogue (TTFV) core were synthesized via
sequential Sonogashira and Horner-Wadsworth-Emmons (HWE) reactions. The electrochemical and
spectroscopic properties of these TTFV tweezers were investigated by UV-vis absorption spectroscopy,
cyclic voltammetry, and spectro-electrochemical measurements. The property characterizations suggest

potential application in electrochemically-actuated molecular switching devices.

© 2010 Elsevier Ltd. All rights reserved.

Tetrathiafulvalene (TTF) derivatives aside from their traditional
use for organic conducting materials’ have recently attracted
growing attention as building blocks for stimuli-responsive molec-
ular devices such as sensors, switches, and logic gates.!*? Of
numerous TTF derivatives, diaryl-substituted vinylogous tetra-
thiafulvalene (TTFV) shows unique conformational switching prop-
erty associated with a simultaneous two-electron redox reaction
occurring on the TTFV moiety.> Upon oxidation the TTFV scaffold
changes from cis to trans conformation as a result of significant
electrostatic repulsion between the two dithiolium rings. This
switching process is rapid, reversible, and readily actuated by elec-
trochemical or chemical inputs. Taking advantage of this property,
a number of TTFV-based switchable ligands for metal cations has
been previously prepared and investigated.?*3“* Most recently,
our group reported the use of a simple acetylenic TTFV precursor
to selectively construct two distinct types of TTFV-macromole-
cules, shape-persistent macrocycles and linear polymers, wherein
the conformational switching of TTFV dictating the synthetic
consequences.’

The unique switching property of diaryl-substituted TTFV led us
to envisage its usefulness as a molecular hinge for electrochemi-
cally-actuated molecular tweezers.® To further explore this con-
cept, we designed a new type of TTFV molecular tweezers. As
shown in Scheme 1, two m-conjugated functional groups are en-
listed as the ‘tips’ of tweezers, which are connected to a central
TTFV core through rigid covalent linkage. In principle, such TTFV
tweezers would assume a stable V-like molecular shape in the neu-
tral state, giving a ‘close’ form in which the m-tips are spatially
close enough to allow co-operative ‘griping’ of a guest molecular
species through non-covalent forces such as m-stacking or
charge-transfer interactions. Upon oxidation, the TTFV molecular
hinge would rotate into a linear trans orientation, thus ‘opening’
the molecular tweezers to release the guest. Given the remarkable
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electronic properties of TTFV,>™> the molecular tweezers are
accordingly envisioned to exhibit easy controllability and versatile
adaptability for the preparation of functional molecular switching
devices.

Prior to testing the tweezer-like behavior, proof-of-concept
model compounds need to be prepared. In this Letter, we report
the synthesis and molecular properties of two TTFV-hinged
molecular tweezers, the tip regions of which were designed to
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Scheme 1. General structure of TTFV-hinged molecular tweezers.
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Scheme 2. Synthesis of AQ-TTFV-AQ 3 by Sonogashira coupling.

be anthraquinone (AQ) or anthraquinoid-type m-extended tetra-
thiafulvalene (TTFAQ), respectively. In the ground state, the AQ
group has a planar m-framework, whereas TTFAQ takes a sad-
dle-like structure.” Given the rich electronic properties of AQ
and TTFAQ, the two designed molecular tweezers are thus ex-
pected to show supramolecular interactions with certain aromatic
species via m-stacking and charge-transfer forces. Moreover, the
tweezers are donor/acceptor molecular arrays that may find
applications in organic electronic materials and molecular switch-
ing devices.”

Scheme 2 illustrates the synthesis of AQ-tipped molecular twee-
zers 3. Acetylenic TTFV precursor 1 was first prepared through the
method we previously reported.”> Removal of the trimethylsilyl
groups in TTFV 1 with K,COs3, followed by Sonogashira coupling
with 2-iodoanthraquinone (2), afforded molecular tweezers 3 in
66% yield. Note that compound 3 is an acceptor-donor-acceptor
triad in electronic structure and hence is referred to as AQ-TTFV-
AQ in the following discussions. With compound 3 in hand, the tar-
geted TTFAQ-tipped tweezers were supposed to be readily obtained
through a twofold Horner-Wadsworth-Emmons (HEW) reaction.
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Scheme 3. Synthesis of TTFAQ-TTFV-TTFAQ 5 by HWE reaction.

As shown in Scheme 3, phosphonate 4% was first treated with a
strong base, n-BulLi, at low temperature to form phosphonate ylide.
AQ-TTFV-AQ 3 was next added to react with the in situ generated
phosphonate ylide, affording the desired molecular tweezers 5
which is a TTFAQ-TTFV-TTFAQ triad. The HWE reaction produced
5 in reasonable yields; however, purification of 5 by column chro-
matography was found tedious and tricky. Compound 5 tends to
decompose slowly in contact with silica gel. As a result, the isolated
yield of 5 often showed significant variation as a function of the
duration of column chromatographic separation.

In addition to the HWE strategy, we have also tried an alterna-
tive Sonogashira coupling route to synthesize compound 5. As
shown in Scheme 4, a mono-iodo substituted TTFAQ precursor 7
was first prepared by a P(OEt);-promoted olefination reaction® be-
tween 2-iodoanthraquinone 28¢ and thione 68 in toluene at 100 °C.
The reaction gave the desired product 7 in 43% yield, along with
the formation of two byproducts 8 and 9 resulting from incomplete
olefination. All these compounds were readily separated and puri-
fied by column chromatography. Cross-coupling of 7 with desily-
lated TTFV 1 under the catalysis of Pd/Cu in Et3N afforded
compound 5, which precipitated out during the reaction. The crude
product could then be easily purified by flushing through a short
silica plug with CHCls, giving pure 5 in a yield of 62%. The short
separation procedure considerably reduced the undesirable
decomposition of 5 when exposed to silica gel, therefore, ensuring
more consistent and reproducible yields for this reaction.

The molecular structures of TTFV-hinged tweezers 3 and 5 were
characterized by IR, NMR, and MS analyses.'® The electrochemical
redox properties of 3, 5, and TTFV precursor 1 were investigated by
cyclic voltammetry (CV), and detailed cyclic voltammograms are
given Figure 1.
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Scheme 4. Synthesis of TTFAQ-TTFV-TTFAQ 5 by Sonogashira coupling.
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Figure 1. Cyclic voltammograms of (A) TTFV 1, (B) AQ-TTFV-AQ 3, and (C) TTFAQ-
TTFV-TTFAQ 5. Experimental conditions: analyte (ca. 10~> M); BusNBF,4 (0.1 M) as
supporting electrolyte; CH,Cl, as solvent; glassy carbon as working electrode; Pt
wire as counter electrode; Ag/AgCl as reference; scan rate 0.1Vs™'.

From Figure 1A, it can be seen that TTFV 1 gives a reversible
redox couple at E,, =+0.67 V and E,. = +0.46 V, which are attrib-
uted to a simultaneous two-electron process. In the CV profile of
AQ-TTFV-AQ 3 (Fig. 1B), the TTFV-originated redox wave pair is sig-
nificantly shifted relative to TTFV 1. The E,,, value is shifted to less
positive direction at +0.61 V, while E,,. to more positive potential at
+0.54 V, indicating increased electrochemical reversibility. The for-
mal oxidation potential (Ep, + E,c)/2 of 3 (+0.58 V) is observed to be
slightly greater than that of TTFV 1 (+0.57 V), as a result of the
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Figure 2. (A) UV-vis absorption spectra of 1, 3, and 5 measured in CH,Cl,. (B) UV-
vis spectrum of 3 comparing against the spectrum of mixture of 1 and 2 (in 1:2
molar ratio).

electron-withdrawing effect of the AQ groups on the TTFV unit in
3 through m-conjugation.?™8%¢ In the negative potential window,
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two reversible redox wave pairs are observed, which are typical of
the successive two-step reduction of AQ and indicate no electronic
communication between the two AQ groups.’¢ Of interest is the
cyclic voltammogram of TTFAQ-TTFV-TTFAQ 5 (Fig. 1C). In the ano-
dic scan, only one oxidation peak is observed at +0.68 V. The cur-
rent intensity of this peak suggests it arise from simultaneous
oxidation at the central TTFV and the two TTFAQ moieties involv-
ing total 6 electrons. In the cathodic scan, however, two reduction
peaks are seen at +0.55V and +0.23 V, respectively. The former is
likely due to the reduction of the central TTFV unit, while the latter
corresponds to the reduction of the two TTFAQ moieties. The CV
patterns of 5 reveal a significant degree of electronic contact be-
tween the TTFV and TTFAQ groups within the molecule.

The electronic absorption properties of molecular tweezers 3
and 5 were investigated by UV-vis absorption spectroscopy. Figure
2A compares the absorption spectra of 1, 3, and 5. TTFV 1 shows an
absorption band at 380 nm in the low-energy region. In the spec-
trum of AQ-TTFV-AQ 3, a notable absorption shoulder at 460 nm
along with broad long-wavelength absorption tail extending to
ca. 580 nm is observed. To clarify the origin of this band, UV-vis
spectrum of a 1:2 mixture of TTFV 1 and AQ 2 was determined
and compared with the spectrum of 3 (Fig. 2B). The absence of such
a low-energy absorption band in the UV-vis profile of the mixture
of 1 and 2 confirms that the long-wavelength shoulder and tail in
the spectrum of 3 is due to intramolecular charge transfer (ICT).
This conclusion is in agreement with the CV results, indicating very
significant electronic interaction between the TTFV and AQ moie-
ties through acetylenic linkage. The absorption spectrum of
TTFAQ-TTFV-TTFAQ 5 shows a broad low-energy band peaking at
416 nm, the origin of this band can be assigned to overlapped
n—m transition bands of TTFV and TTFAQ.5%¢

To gain a deeper insight into the redox process, UV-vis spectro-
electrochemical analyses were performed on compounds 1, 3, and
5. Detailed experimental results are shown in Figure 3. The absorp-
tion band of TTFV 1 at 380 nm is observed to decrease with
increasing applied potential ( Fig. 3A). In the meantime, a new
long-wavelength absorption band emerges with a peak at
642 nm and a shoulder at 713 nm. This band is ascribed to the
characteristic absorption of dication [TTFV]?". In the spectro-elec-
trochemical measurements of AQ-TTFV-AQ 3, a similar long-wave-
length band is observed to grow with increasing applied potential,
indicating the formation of [TTFV]?*. The ICT band of 3 at 380 nm is
observed to steadily reduce as the oxidation of TTFV progresses,
while the absorption due to AQ at ca. 360 nm remains unchanged.
For TTFAQ-TTFV-TTFAQ 5, a broad band peaking at 650 nm grows
with increasing applied potential. Concomitantly, the absorption
band at 416 nm shows a significant decrease and a band at ca.
330 increases notably. According to the CV data, the spectral
changes in Figure 3C are attributed to the simultaneous formation
of [TTFV]?** and [TTFAQJ?* in compound 5 during electrolysis. Over-
all, the spectro-electrochemical studies corroborate that the TTFV
units in molecular tweezes 3 and 5 undergo a two-electron oxida-
tion process similar to TTFV precursor 1 upon electrochemical oxi-
dation. Given the already known conformational switching
behavior of TTFV 1 taking place in electrochemical redox reaction,’
it is reasonably to believe that the conformations of the two molec-
ular tweezers 3 and 5 should be electrochemically controllable as
proposed in Scheme 1.

In summary, two new TTFV-hinged molecular tweezers with AQ
or TTFAQ as the side groups were synthesized via sequential Sono-
gashira and HWE reactions. Electrochemical and spectroscopic
analyses revealed significant electronic communications between
the central TTFV and the side groups (AQ or TTFAQ) through m-con-
jugation. In both of the molecular tweezers, the TTFV molecular
hinge undergoes a simultaneous two-electron transfer to form sta-
ble dication. This process features chemical reversibility, which
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Figure 3. UV-vis spectral changes with increasing applied potential steps during
electrolysis. Experimental conditions: BusNBF4 (0.1 M) as supporting electrolyte;
CH,Cl; as solvent; Pt mesh as working electrode; Pt wire as counter electrode; Ag/
AgCl as reference.

suggests usefulness in the preparation of molecular switching de-
vices. We are currently investigating the supramolecular guest-
host chemistry of this type of TTFV molecular tweezers, and further
results will be disclosed in due course.
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